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We analyze the dynamics of a star polymer of F arms trapped in a double well potential. Initially the
molecule is confined to one of the minima and can cross over the barrier to the other side. We use the
continuum version of the Rouse-Ham model and calculate the rate of crossing using the multidimensional
approach due to Langer �Ann. Phys. �N.Y.� 54, 258 �1969��. Finding the transition state for the process is
shown to be equivalent to the solution of Newton’s equations for F independent particles, moving in an
inverted potential. For each star polymer, there is a critical barrier top curvature, below which the star crosses
over in coiled conformation. The value of the critical curvature is determined by the first Rouse mode of the
star. If the curvature is greater than this critical value, the saddle point for the crossing is a stretched confor-
mation of the star. For the coiled transition state, the activation energy is proportional to the total arm length
of the star. For the stretched transition state, as one increases the length of an arm of the star, the activation
energy at first increases and then decreases. This results from the fact that in the stretched state, only one arm
of the polymer is stretched across the top of the barrier, while others need not be. We calculate the rate by
expanding the energy around the saddle up to second order in the fluctuations. As we use the continuum model,
there are infinite modes for the polymer and, consequently, the prefactor has infinite products. We show that
these infinite products can be reduced to a simple expression, and evaluated easily. However, the rate diverges
near NTc due to the multifurcation, which results in more than one unstable mode. The cure for this divergence
is to keep terms up to fourth order in the expansion of energy for these modes. Performing this, we have
calculated the rate as a function of the length of the star. It is found that the rate has a nonmonotonic
dependence on the length, suggesting that longer stars may actually cross over the barrier faster.
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I. INTRODUCTION

The study of star polymers is of great interest as they have
applications in micellar and other polymeric surfactant sys-
tems �1�, electrophoresis, and gel permeation chromatogra-
phy �2�. These procedures are extensively used for the sepa-
ration of polymers of various sizes. They are very important
in molecular biology as DNA with lengths from a few bases
to many millions of bases, with and without branching, can
be accurately fractionated by electrophoresis. Passage of
DNA through microfabricated channels have been studied by
Han et al. �3–5�. In a recent experiment along such lines by
Volkmuth et al. �6�, successful fractionation of 12 branched
molecules �most of which are Y shaped� out of thousands of
linear polymers was performed. They observed electrostatic
trapping of tribranched DNA molecules undergoing electro-
phoresis in a microfabricated pseudo-two-dimensional array
of posts. This methodology could in principle be used as an
analytical device and preparative tool to examine and purify
branched molecules that are known to arise during DNA rep-
lication, recombination, and repair. In another experiment
Heuer et al. �7� have developed a procedure for synthesizing
large stable branched DNA structures that are visible in a
fluorescence microscope and studied their electrophoretic be-
havior in polymer solutions and gels. In another experiment,
done at a given gel concentration, they found that relatively
small branch lengths are enough to cause a detectable reduc-
tion in the electrophoretic mobility �8�. The reason for this
change in mobility when branching is introduced is not
known. They explore two possibilities: �i� the branched DNA
could have a greater interaction with the gel than linear

DNA, causing it to move slower or �ii� the linear DNA could
have modes of motion or access to pores that are unavailable
to the branched DNA. The electrophoretic behavior is differ-
ent for different concentrations of polymer solutions and
gels. In dilute polyacrylamide solutions, DNA moves as a
random coil, while in semidilute solution �9� it moves in a
squidlike profile with the star arms outstretched in the direc-
tion opposite to electric field and dragging the branch point
through the sieving medium. In concentrated polymer solu-
tions, the arms of the star extend and form V-shaped struc-
tures with the core as the apex. In polyacrylamide and
agarose gels, where matrix entanglements are fixed, DNA
stars become trapped.

For all the above procedures, the polymer has to pass
through nanosized pores where it cannot attain all the con-
formations. So essentially the passage of a star polymer
through pores is akin to the passage of a star polymer over a
barrier in space. In an interesting experiment Han et al. �10�
investigated the motion of double stranded DNA through
nanochannels of different depths in different regions. In the
narrower region of the channel, the DNA cannot sit comfort-
ably and hence it feels an entropic barrier. Hence, the mol-
ecule has to stretch out in that region. A large number of
papers have looked into the barrier crossing of a long chain
molecule �11–13�. Park and Sung �14,15� were the first to
investigate the passage of long chain molecules through na-
nopores where the barrier was purely entropic. In this case
the barrier is broad and the motion of the chain is taken to be
diffusive. They argued that the time of crossing is propor-
tional to N3 if there is no free energy bias between the two
sides, but it is proportional to N2 if there is a free energy
difference. Experimentally it was found that the time of
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crossing is proportional to N �16�. Lubensky and Nelson �17�
proposed a model in which only the friction acting on the
part of the chain inside the pore is important. Hence, the
crossing time is proportional to N if there is a free energy
difference between the two sides. Following this, many stud-
ies were done where diffusion of only the part which is in-
side the pore is important. A more detailed model was con-
sidered by Sebastian and Paul �18,19�. They considered long
chains whose total length is greater than the width of the
barrier and used a continuum version of the Rouse model.
They suggested a kink mechanism and showed that the time
of crossing is proportional to N. On the other hand, in an
interesting paper, Park and Sung �20� considered a short
chain with chain length shorter than the width of the barrier
and used the discrete version of the Rouse model. They
showed that as one increases the length, the transition state
configuration of the chain can undergo a coil to stretch tran-
sition above a critical length. Below that length the chain
crosses the barrier as a coil and above the length it crosses
with a stretched conformation. The stretching lowers the ac-
tivation energy, thus helping the crossing process. They have
found a minimum in the rate, suggesting that a longer chain
can move over the barrier faster. The case of a semiflexible
polymer crossing over a barrier has been studied by Lee and
Sung �21� and also by Kierfeld et al. �22�. In another study
by Sebastian and Debnath �23�, barrier crossing of short to
intermediate length molecules was investigated using the
continuum version of the Rouse model. As found by Park
and Sung �20�, the chain takes a coiled form while crossing
if the length of the chain is below the critical length. Above
this length, the chain adopts a stretched conformation while
crossing. Using Langer’s �24� approach to the multidimen-
sional nucleation problem, one can calculate the rate as a
product of a prefactor �an attempt frequency� and an expo-
nential factor. The prefactor involves infinite products of fre-
quencies of normal modes of the initial and transition states.
But Sebastian and Debnath �23� showed that this infinite
product can be rewritten as a single term following an earlier
derivation, due to Coleman �25�. This leads to a compact
expression for the rate and an easy way to calculate it. How-
ever, the rate calculated using this expression diverges at that
length where the transition state changes from the coil to the
stretched conformation. The reason for this divergence is
pointed out to be due to the bifurcation of the saddle point
leading to two new saddles. Paul �26� has studied the acti-
vated barrier crossing of a star polymer at a submicron-size
entropic trap. The barrier crossing rate was calculated using
Langer’s approach and the Rouse-Ham model. He consid-
ered only a short armed star polymer, which crosses over the
barrier as a coil. Consequently the activation energy depends
only on the total contour length of the star and not on the
lengths of individual arms.

In this paper we examine the crossing of a star chain with
short to intermediate lengths. We find that the transition state
while crossing has different conformations depending on the
lengths of the arms of the star. To get the conformation of the
transition state, we show that one has to analyze a Newton-
like equation of motion for fictitious particles moving in an
inverted potential. We find that for sufficiently small arm
lengths, the saddle is a coil conformation, and otherwise the

saddle is a stretched conformation. The stretched conforma-
tion can be found by solving Newton-like equations. Using
Langer’s multidimensional approach one can calculate the
rate and just as previously, it is possible to write an infinite
product as a single term using Coleman’s approach �25�. This
way of calculation avoids the complexity of infinite product
calculation. Using this we calculate the rate for a star of
equal arm lengths. We find that the activation energy first
increases linearly with arm length, then after a critical length
it starts decreasing as the arms are extended on both sides of
the barrier. This leads to a nonmonotonic behavior in the rate
of crossing.

II. OUR MODEL

We consider a star of F arms and use the simplest possible
model for the dynamics of a star polymer: the Rouse-Ham
model �27� in one dimension. Each arm of the star is a flex-
ible linear string of length N� ��=1,2 , . . . ,F�. The nth seg-
ment in the �th arm is labeled as n�. The center �branch
point� of the star is taken to correspond to n�=0 and the end
of the �th arm has n�=N�. Thus the total number of seg-
ments in the star is ��N�=NT. Using the discrete Rouse-Ham
model for a star, in a double well potential would lead to
nonlinear difference equations, which are difficult to handle.
Hence we use the continuum version of the model and it is
analytically tractable. Use of the continuum approach leads
to differential equations, which are easy to analyze. Also, we
do not lose any generality by this, as even the discrete ver-
sion itself only represents the real chain, by a phantom chain
of beads. Further, the results of the discrete and continuum
versions would be close if N�10. If the position of the n�th
segment at the time t is R��n� , t�, then the continuum version
of the Rouse-Ham equation is

�
�R��n�,t�

�t
= m

�2R��n�,t�
�n�

2 − V�„R��n�,t�… + f��n�,t�,

� = 1, . . . ,F , �1�

where � is the segmental frictional coefficient and m�= 3kBT

l2
�

is the spring constant for the arms. It takes into account the
fact that the free energy of the chain increases on stretching
the chain. V�R� is the potential experienced by a segment of

the polymer located at R and V��R�=
dV�R�

dR . f� is a Gaussian
random force, having moments �f�n� , t��=0 and �f�n� , t�
�f�n�� , t���=2�kBT��n�−n�����t− t��. The boundary condi-
tions are

� �R��n�,t�
�n�

	
n�=N�

= 0, � = 1, . . . ,F �2�

at the free ends of the star. At the branch point

�
�=1

F � �R��n��
�n�

	
n�=0

= 0 �3�

and

R��0� = R��0� for all � and � . �4�

Note that Eq. �4� has only �F−1� independent conditions.
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One can write Eq. �1� in the form

�
�R��n�,t�

�t
= −

�E�R��n�,t��
�R��n�,t�

+ f��n�,t� , �5�

where E�R��n� , t�� is the free energy functional defined by

E�R�� = �
�=1

F 

0

N� �m

2
� �R�

�n�
	2

+ V�R���dn�. �6�

III. ACTIVATION ENERGY FOR BARRIER
CROSSING

We assume that the potential V�R� is of the form of an
asymmetric double well, given by

V�R� = k�R + a0�2�3R2 − 2Ra0 − 4Ra1 + a0
2 + 2a0a1�/6

�7�

�see Fig. 1�. This potential has two minima at R=−a0 and at
R=a1 separated by a barrier located at R=0. Note that
V�−a0�=0 and that the barrier has a height of Vb=V�0�
= 1

6a0
2�a0

2+2a0a1�k. We denote the frequency of the potential
at the top of the barrier by �b, while the frequency at the
initial state �R=−a0� is denoted as �0. Initially, the star is in
the metastable well located at −a0, and then has to overcome
the barrier. To escape from the well the star has to go over a
saddle on the free energy hypersurface. Thus, to calculate the
extrema on the free energy hypersurface, we have to extrem-
ize E in Eq. �6� with respect to the conformation of the star.
We get

�E�R��n�,t��
�R��n�,t�

= − m
�2R��n�,t�

�n�
2 + V�„R��n�,t�… = 0. �8�

For each �, if n� is thought of as analogous to time, this
equation is just Newton’s equation for a fictitious particle of
mass m. The potential that the particle moves in is the upside
down potential �19� −V�R� and it moves for a total “ time”
N�. Equations �3� and �4� imply that all the F particles start

at the same point with a total initial momentum zero and Eq.
�2� means that the �th particle has to come to rest after a
“time” N�. Looked this way, it is obvious that there are some
very simple solutions to Eqs. �2�–�4� and �8�. These are the
solutions in which the F particles are all just sitting at exactly
the same point. This means that they do not feel any force at
any time, which implies that the point has to be an extremum
of the potential V�R�. Thus, the solutions are �a� R��n��=
−a0 �labeled as A in Fig. 2�, �b� R��n��=a1 �labeled as B in
Fig. 2�, and �c� R��n��=0 �labeled as C in Fig. 2�. The first
solution corresponds to the star sitting in the metastable
minimum of the potential, and is the initial state for the
crossing process. The second gives the final state, while the
third could be the transition state for the crossing process. In
fact for sufficiently short star polymers, it is the transition
state. However, if the arms are long, the solution �c� is no
longer a saddle as we find below. This means that there must
be additional solutions to the four equations �2�–�4� and �8�.
Such a solution too is illustrated in Fig. 2. A similar situation
occurs in the case of barrier crossing of a linear chain �23�.

The initial state has an energy, which may be found by
substituting R��n��=−a0 into Eq. �7�. This gives Einitial=0.
The second solution R��n��=0 gives E‡=NTVb. We use the
symbol ‡ to indicate quantities that are associated with a
saddle �transition state�. If the arms are long, then there will
be nontrivial solutions to Eqs. �2�–�4� and �8�. These are the
solutions in which all the particles start out with some initial
momenta, such that the total initial momentum is zero, and
each particle moves in the upside down potential. The initial
momentum and position will confer the �th particle an en-
ergy E�; consequently it will travel outwards from the initial
point and will come to a stop after a “time” N� at which
point its potential energy −V(R��N��)=E�. We shall denote
the solution by R�

‡�n��. Energy conservation for the �th par-
ticle implies that
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FIG. 1. Plot of �V�R� against R / l—the potential is an asymmet-
ric double well. The values of the parameters used are k=2.6436
�10−4, a0=5, a1=7, Vb=0.1046 in dimensionless units. �See Eq.
�7� and the discussion in Sec. V.�

−10 −5 0 5 10

−0.2

−0.1

0

R / l

Po
te

n
ti

al
En

er
g

y,
−

β
V

A

C

B

D

FIG. 2. Plot of −�V�R� against R / l—the potential is an inverted
asymmetric double well. A denotes the metastable, initial state,
while B is the more stable, final state. C denotes the transition state
when the crossing occurs as a coil. The thick full and dotted lines
marked as D show the arms of the star appropriate for the stretched
transition state for a star of three arms, obtained by solving Newton-
like equations. Two of the arms are on the right side of C. The two
arms have to be represented as one exactly behind the other, but for
the sake of clarity one of the arms on the right-hand side has been
slightly shifted upwards.
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m

2
� �R�

‡�n��
�n�

	2

− V�R�
‡� = E�. �9�

The energy of the chain corresponding to this solution is

E‡ = �
�=1

F 

0

N� �m

2
� �R�

‡

�n�
	2

+ V�R�
‡��dn�. �10�

On using Eq. �9� this becomes

E‡ = �
�=1

F �E�N� + 2

0

N�

V„R�
‡�n��…dn�	 .

Plots of E‡ are given in Figs. 4 and 5.

IV. THE RATE CALCULATION

After finding the saddle and the corresponding activation
energy we are interested in calculating the rate of thermally
activated crossing of the star from one well to the other. We
use the multidimensional Kramer’s theory due to Langer
�24�. The Rouse-Ham equation leads to the functional
Fokker-Planck equation

�P

�t
=

1

�
�
�



0

N�

dn�

�

�R��n���kBT
�P

�R��n��
+

�E�R��n���
�R��n��

P� ,

�11�

for the probability distribution functional P. This equation
means that associated with the coordinate R��n�� there is a
flux j��R��n��� given by

j��R��n��� = −
1

�
�kBT

�P

�R��n��
+

�E�R��n���
�R��n��

P� . �12�

Let us now consider the initial state, which is metastable.
We assume the barrier height for the crossing process �E‡� to
be large. As a result, the rate of crossing is small and one can
assume that the probability distribution in the well is given
by the equilibrium one. Hence it is

P =
1

Z0
exp− E�R��n���/kBT� . �13�

Z0 is defined by

Z0 = �
�

 D�R��n��� exp− E�R��n���/kBT� . �14�

For small amplitude motion around the minimum, one would
have R��n��=−a0+�R��n��. Using this, the energy functional
correct up to second order in �R��n�� is

E�R��n��� = �
�=1

F
m

2



0

N�

dn��R��n���−
�2

�n�
2 + �0

2��R��n�� ,

�15�

where we have defined �0 by putting V��−a0�=m�0
2 and used

the fact that V�−a0�=0. Now we introduce 	k and 
k, as the
normal modes of the star, at the transition state by

�−
�2

�n�
2 + �0

2		�k�n�� = 
k	�k�n�� �16�

and satisfying boundary conditions of Eqs. �2�–�4�. It is also
useful to introduce the normal Rouse modes of the free star.
These are just 	�k�n�� themselves and obey the equation

−
�2

�n�
2 	�k�n�� = �k

2	�k�n�� , �17�

where �k
2 are the frequencies of the Rouse-Ham modes of the

free star. Note that the lowest eigenvalue �0
2=0 and 	�0�n��

=1/�NT and corresponds to translation of the star as a whole.
The mode 	�1�n�� is a vibrational mode. As �0

2 is just a
constant, one gets 
k=�k

2+�0
2. Now we expand �R��n�� in

terms of 	�k as �R��n��=�kck	�k�n��, where ck is the coef-
ficient of the expansion, and get

E�R��n��� =
m

2 �
k


kck
2. �18�

This expression for the energy may be used in Eq. �14� and
the functional integration performed by integrating over all
the ck’s. The result is

Z0 = �
k

�2�/m�
k�1/2. �19�

Now we calculate the flux over the saddle point. As before,
we expand R��n�� around the saddle as R��n��=R�

‡�n��
+�R�

‡�n�� and get

Esaddle = E‡ + �
�=1

F
m

2



0

N�

dn��R��n��

��−
�2

�n�
2 + V�„R�

‡�n��…/m��R��n�� . �20�

E‡=E�R‡�n�� is the activation energy. We introduce the

“normal modes” at the saddle by �− �2

�n�
2 +

V��R�
‡�

m
�	�k

‡ �n��
=
k

‡	�k
‡ �n�� with 	�k

‡ �n�� obeying the boundary conditions
similar to Eqs. �2�–�4�. As we are at a saddle, there would be
one unstable mode which we take to be the zeroth mode.
Now we expand the displacement of the star away from the
transition state as

�R�
‡�n�,t� = �

k

ck
‡	�k

‡ �n�� �21�

to get

Esaddle = E‡ +
m

2 �
k

�ck
‡�2
k

‡. �22�

Following Refs. �23,24�, we get the rate

ANANYA DEBNATH AND K. L. SEBASTIAN PHYSICAL REVIEW E 76, 051803 �2007�

051803-4



 =
m

2��
�− 
0

‡�1/2� �
k


k

�
k

�
k
‡�

1/2

exp�− �E‡�

=
m

2��
�− 
0

‡�� �
k


k

�− 1��
k


k
‡�

1/2

exp�− �E‡� . �23�

The infinite product in this equation can be rewritten �see the
Appendix� to get

 =
m

2��
�− �0

‡�� ��
�

���0���
�
� � ln ���n��

�n�
	

n�=0

�− 1���
�

��
‡�0���

�
� � ln ��

‡�n��
�n�

	
n�=0

�
1/2

�exp�− �E‡� , �24�

where the ���n�� and ��
‡�n�� obey the following equations:

�−
�2

�n�
2 + �0

2	���n�� = 0 and ���N�� = 1; ����N�� = 0

�25�

and

�−
�2

�n�
2 + V�„R�

‡�n��…/m	��
‡�n�� = 0 and

��
‡�N�� = 1; ��

‡��N�� = 0. �26�

Equation �25� is easily solved to get ���0�=cosh��0N��, so
that

 =
m�− �0

‡�
2�� ��0��

�=1

F

cosh�N��0���
�=1

F

tanh�N��0�

��
�=1

F

��
‡�0���

�=1

F � � ln ��
‡

�n�
	

n�=0

�
1/2

e−�E‡
.

�27�

This expression can be used to calculate the rate for any kind
of saddle �coiled or stretched�.

A. When coiled conformation is the saddle

We consider a star having F arms of arbitrary lengths. For
sufficiently small arm lengths �to be quantified below�, the
saddle point is given by R�

‡�n��=0. In this case V��R�
‡�=

−m�b
2. As this is a constant, independent of n�, 	�k

‡ �n�� are
just the same as the eigenfunctions of a free star and the
eigenvalues are given by 
k

‡=�k
2−�b

2. The unstable mode has
the eigenfunction 	�k

‡ �n��=1/�NT and the corresponding ei-
genvalue 
0

‡=�0
2−�b

2=−�b
2. We solve Eq. �26� to get ��

‡�0�
and use it in Eq. �27� to get the rate. The result is

� =
m�b

2

2����0��
�=1

F

cosh�N��0���
�=1

F

tanh�N��0�

�b��
�=1

F

cos�N��b���
�=1

F

tan�N��b� �
1/2

�e−�NTVb. �28�

If one imagines that the barrier top curvature as measured
by m�b

2 is small, then this extremum in the potential energy
surface �R=0� has only one unstable mode, with an eigen-
value 
0

‡=�0
2−�b

2=−�b
2. As the curvature is increased, the

value of 
1
‡=�1

2−�b
2 decreases and at values of �b��1, the

extremum develops one more unstable direction, and is no
longer a saddle. Instead of changing the curvature, one can
think of increasing the length of the �th arm of the star,
keeping the lengths of the other arms fixed. Then, the value
of �1 would decrease and the extremum will cease to be a
saddle at a critical length N�c of the chain �this value will
depend on the lengths of the other arms�. This is manifested
as a divergence of the rate, as seen above and occurs because
R=0 is not a saddle anymore, due to the fact that 
1

‡ van-
ishes. � is the rate constant in the region where the coil is
the transition state. In the special case where all the arms are
equal �N�=N�, Eq. �28� becomes

� =
m�b

2

2��
��0

�b
	1/2� sinh�N�0�

sin�N�b� 	
1/2� cosh�N�0�

cos�N�b� 	
�F−1�/2

�e−�NFVb �29�

and the rate diverges when cos�N�b�=0, i.e., when �b

=� /2N. In the case where N� is small �i.e., N��0�1 and
N��b�1�, Eq. �29�

� =
m�b�0

2��
e−�VbNT, �30�

which is what one would expect for the crossing of a single
particle which has to climb over a barrier of height VbNT.

It is of interest to consider the eigenfunctions and eigen-
values associated with the coiled saddle, as they are used
later in the paper. For an equal armed star, when the saddle
point is the coil conformation, the normal modes are deter-
mined by

�−
�2

�n�
2 − �b

2		�k
‡ = �k

‡	�k
‡ �31�

with the boundary conditions

� �	�k
‡

�n�
	

n�=N

= 0 �32�

and

�
�=1

F � �	�k
‡

�n�
	

n�=0
= 0, �33�

and

BARRIER CROSSING BY A STAR POLYMER… PHYSICAL REVIEW E 76, 051803 �2007�

051803-5



	k�
‡ = 	k�

‡ at n� = n� = 0 for � � � for any � = 1 to F .

�34�

The solution for the �th arm, satisfying Eqs. �31� and �32�, is

	�k
‡ = a�k

‡ cos��n� − N��k� �35�

with �k=��b
2+
k

‡. Equation �34� leads to

ak1
‡ cos�N�k� = ak2

‡ cos�N�k� = ¯ = akf
‡ cos�N�k� . �36�

Two cases can now be distinguished.

1. Case I

If cos�N�k��0, then there is only one way of satisfying
these equations and that is to have ak1

‡ =ak2
‡ = ¯ =akF

‡ . Then
use of Eq. �33� gives

sin�N�k� = 0 �37�

so that �k= �k
2N for k=0,2 ,4 , . . . . Therefore, 
k

‡= � �k
2N

�2−�b
2.

2. Case II

On the other hand, if

cos�N�k� = 0,

then Eq. �36� is satisfied identically. In this case Eq. �33�
gives

�
�

a�k
‡ = 0. �38�

This means that even though we have F unknowns, there is
only one condition to determine them. Thus there are �F
−1� linearly independent solutions �normal modes�. For all
of them �k=k� /2 with k=1,3 , . . . . Thus 
k

‡= � �k
2N

�2−�b
2, and

the mode is �F−1�-fold degenerate.
The two cases that we have found may together be written

as 
k
‡= k2�2

4N2 −�b
2 with k=0,1 ,2 ,3 ,4 , . . . . The k=even solu-

tions are nondegenerate while k=odd solutions are
�F−1�—fold degenerate. �We have shown the energy levels
for the modes of a star polymer having three equal arms in
Fig. 3�. As we will be using the eigenfunctions for the k=1
modes, we give their explicit expression for the case where
the star has three equal arms:

	11
‡ �n1� =� 2

3N
cos��n1 − N��1� ,

	21
‡ �n2� =� 2

3N
e

2�i
3 cos��n2 − N��1� ,

	31
‡ �n3� =� 2

3N
e

−2�i
3 cos��n3 − N��1� . �39�

The other degenerate mode is simply the complex conjugate
of the above and is given by

	�2
‡ �n�� = 	�1

‡ �n��*.

B. When the saddle is a stretched conformation

We now calculate the rate of crossing for a star of three
equal arms, as a function of the length of one arm N. For
small values of N one can use the expression of Eq. �29�.
However, this rate would diverge as N approaches the value
Nc=� /2�b. For N�Nc, the expression is not valid at all, as
the coil is no longer the saddle. The fact that it is not a saddle
any longer may be realized from the eigenvalue 
1

‡= � �
2N

�2

−�b
2 which becomes negative for N�Nc. As this mode is

degenerate, one can conclude that the coil, which was the
saddle for N�Nc, has developed two more unstable direc-
tions, meaning that it is now a third order extremum. What is
happening is that the saddle point undergoes a multifurca-
tion, leading to new saddles. Simple counting shows that
there are twelve new saddles. The reasoning goes as follows.
Suppose we have a stretched transition state. Then one of the
arms has to be on one side �say the left side� of the barrier
and the remaining two on the other. There are 3! permuta-
tions of the arms with this arrangement. Then one arm can be
on the right side and the other two on the left, and then again,
there are 3! ways in which this may happen giving one 2
�3! transition states. The energies of the first six are identi-
cal and so are the energies of the other six. For a symmetrical
double well, all these energies are the same. For an unsym-
metrical double well, the energies would be slightly different
but we shall ignore that in the following and calculate the
rate assuming that they are the same. These twelve saddles
can be accounted for by multiplying the rate in Eq. �27� with
a factor of 12 to get

� =
6m�− �0�

�� � 3�0 cosh3�N�0�tanh�N�0�

�
�=1

3

��
‡�0��

�=1

3 � � ln ��
‡

�n�
	

n�=0
�

1/2

e−�E‡
.

�40�

� denotes the rate constant, for N�Nc.

C. Rate in the vicinity of Nc

The rate obtained using equations �29� and �40� are shown
in Fig. 6. It is seen that both the equations suffer from diver-
gences near N=Nc. An expression for the rate that is valid for
N�Nc �but not much above it� can be obtained as follows.
The divergence occurs due to the vanishing of the eigenvalue

1

‡. The cure for the divergence is obviously to go beyond the
second order in the expansion for energy for just the k=1

−

−
−

FIG. 3. Energy levels for the modes of the star polymer having
three arms of equal lengths. This figure shows that the 0th mode is
nondegenerate while the first mode is twofold degenerate.
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modes. Up to N=Nc, the saddle point is given by the coiled
conformation. As N is increased further, the eigenvalue 
1

‡

becomes negative so that there are now three unstable modes
�k=0 and the two k=1 modes�. To remove the consequent
divergence, the expression for energy in Eq. �22� may be
modified to include terms up to fourth order �R�

‡ so that it
becomes

E = E‡ +
m

2 �
k�1

ck
‡ck

‡*
k
‡ +

m

2
�c11

‡ c11
‡ * + c12

‡ c12
‡ *�2
1

‡

+
V�3��R = 0�

6



0

N

��R�
‡�3dn� +

V�4��R = 0�
24



0

N

��R�
‡�4dn�.

�41�

�Note that in order that �R is real, one has to have c11
‡

= �c22
‡ �*.� In the above V�n��R=0� is the nth order derivative

of the potential V�R� evaluated at R=0. On using the expan-
sion of Eq. �21� and retaining only terms involving c11

‡ and
c12

‡ , we get

E = E‡ +
m

2 �
k�1

ck
‡ck

*‡
k
‡ +

m

2
c11

‡ c12
‡ 
1

‡ +
V�4��R = 0�

3N
�c11

‡ �2�c12
‡ �2.

�42�

Using this in the expression for the flux and proceeding as
earlier, we get the corrected rate c to be

c = ��. �43�

� is the correction factor given by

� =
�a�
2
��

b
ea2/4b�1 − erf� �a�

2�b
	� ,

where a=m��1
‡=m�� �2

4N2 −�b
2� and b=

V�4��R=0��

3N . These ex-
pressions are valid for N above or below Nc, but because of
the approximate nature of our calculations, if N�Nc then N
has to be close to Nc.

V. NUMERICAL CALCULATIONS

Using the above expressions, it is easy to calculate the
rate using MATHEMATICA. For the calculations, it is conve-

nient to use dimensionless variables Ṽ=V /kBT, R̃=R / l, k̃

=kl4 /kBT, and ̃=l2� /kBT. We shall do this, and for the
sake of convenience, drop the tildes above these variables.
Thus in this section all the variables are dimensionless. In
these dimensionless variables the parameters chosen were k
=2.6436�10−4, a0=5, a1=7.

First we have considered the case of a star with unequal
arm lengths. A plot of activation energy as a function of the
length of one of the arms, with the lengths of the other two
fixed, is given in Fig. 4. It is seen that for the coiled saddle,
the activation energy increases linearly with the chain length,
but then from the critical length onward, the transition state
has the stretched conformation. As a result, the activation
energy does not increase linearly. In fact, it increases and
then starts decreasing. A similar plot for a barrier with the

same set of parameters for a star with equal arms is shown in
Fig. 5. Here too, the activation energy at first increases,
reaches a maximum value and then decreases. The reason for
this is simple. Until Nc the transition state is coiled. Beyond
Nc , the transition state is a stretched conformation. For a star
of three arms, in the stretched state, two arms would have to
be on one side of the barrier while the third has to be on the
other side. The branch point will not in general be at the top
of the barrier. Therefore, it gives the possibility of having
only one arm stretched over the barrier, while the remaining
two arms are not. They are sitting away from the top of the
barrier, thus lowering the energy.

We have calculated the rate of barrier crossing of a star
polymer having three equal arms confined to an asymmetric
double well potential. The results are plotted in Fig. 6. The
full line is the rate given by Eq. �29� where the transition
state is a coiled one. This equation is for N�Nc, and gives a
rate that diverges at N=Nc. From Nc onward the transition
state is the stretched one, so that the rate has to be calculated
using Eq. �40�. This is shown as the dashed line in the figure.
This also diverges as one approaches Nc. The rate near Nc is
calculated using Eq. �43�, which takes higher order terms in
c1

‡,1and c1
‡,2 into account. The result is shown by the dotted

line in Fig. 6. It is seen that this result is able to bridge across
the singularity at Nc. For short arm lengths the rate decreases
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FIG. 4. Plot of dimensionless activation energy ��E‡� against
the length of the third arm of the star �N3�, for the potential in Eq.
�7� �in dimensionless units�. The parameters chosen here are a0=5,
a1=7, k=2.6436�10−4. We keep the lengths of two arms fixed with
N1=10 and N2=11.5, and vary the length of the third arm. E‡ in-
creases linearly at first, reaches a maximum, and then slowly de-
creases. When the arms of the star are short, it crosses the barrier in
the coiled up conformation, for which the activation energy is pro-
portional to the total number of segments in the star. When we
increase the length beyond the critical value, the star crosses with
extended conformation. In this extended conformation all the seg-
ments do not sit at top of the barrier and activation energy no longer
increases linearly. Of the three arms, two arms are on one side of
the barrier and the other arm is on the other side. The branch point
is not necessarily at the top of the barrier. One arm is stretched over
the top of the barrier while the other two are not. The two arms,
which are not stretched over the barrier top, occupy the relatively
lower energy region and thus lower the activation energy, resulting
in the observed decrease in activation energy as one increases the
lengths of the arms.
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with length, but as the length increases further the rate starts
to increase slowly due to a decrease in activation energy, that
was discussed earlier. Thus the rate has a nonmonotonic de-
pendence on the length of the arms.

VI. CONCLUSION

We have considered the dynamics of a star polymer of F
arms, confined to an asymmetric double well potential V�R�
in space, which is of relevance to several areas of science. To

make the problem analytically tractable, we use the con-
tinuum version of the one-dimensional Rouse-Ham model.
Initially, the molecule is confined to the less stable minimum
and would eventually escape over the barrier to the more
stable minimum. To calculate the rate of crossing, we use the
multidimensional barrier crossing formula, due to Langer
�24�. Within the Rouse-Ham model, finding an extremum on
the potential reduces to analyzing the Newtonian dynamics
of F fictitious particles each of mass m �=3kBT / l2� in the
upside down potential −V. The particles all have to start at
the same point in space with a total momentum zero and
come to an end at “times” equal to the arm lengths. We have
derived a simple closed form expression for the rate, using
the methods of Coleman �25�. We found that for sufficiently
short arm lengths the transition state �saddle point� is a
coiled state just as in the case of linear polymers �21,23�. For
longer chains, the saddle point is not a coiled state, but is an
extended �stretched� state. For the coiled transition state, the
activation energy is proportional to the total arm length of
the star, but for longer chains this is no longer true. In fact
the activation energy is a linear function of the chain length
until a critical total arm length �NTc� and beyond that it is
not. Beyond NTc, the activation energy increases at first, but
then, in general, it decreases. This happens due to the fact
that at the saddle the star adopts a conformation in which
only one of its arms is stretched over the top of the barrier,
while the other arms are not, while for the coiled state, all the
arms are sitting over the barrier top. Due to this decrease in
activation energy, one has the very interesting situation that a
star with longer arms can escape over the barrier faster than
a smaller one.

We used the approach of Langer to calculate the rate of
crossing the barrier in illustrative cases. The analysis identi-
fies the extrema on the potential energy surface and uses
harmonic expansion around it to calculate the rate of cross-
ing. As we used the continuum version of the Rouse-Ham
model, we have an infinite number of normal modes of mo-
tion around each extremum and hence our formula involved
infinite products over these modes. Using the method of
Coleman and others, we showed that the infinite products
can be written in a simple closed form. This expression was
used to calculate the rate for the coiled and stretched transi-
tion states. However, the rate so obtained was found to di-
verge at the crossover point between the two. This is due to
the fact that at the point of divergence, the frequency of a
mode other than the unstable mode becomes zero, indicating
a multifurcation of the saddle point to give many saddle
points. Thus for a three armed star of equal arm lengths, it
gives rise to twelve new transition states. In order to calcu-
late the rate in the vicinity of this point, it is necessary to go
beyond the harmonic expansion, for the modes that become
unstable. On performing this, we found the resultant rate to
extrapolate well between the ones obtained using coiled and
stretched transition states. As expected, the rate has a non-
monotonic dependence on the total arm length of the star,
suggesting the very interesting possibility that a bigger star
may cross over the barrier faster than a smaller one.
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FIG. 5. Plot of activation energy ��E‡� for a star having three
equal arms. The parameters used are a0=5.0, a1=7.0, k=2.6436
�10−4. This leads to Vb=0.1046. For small N, the star crosses the
barrier as a globule. So the activation energy is linearly proportional
to the total length of the chain. As the star gets extended it stretches
on both sides of the barrier, thus lowering the energy. As a result the
activation energy at first increases linearly with length, reaches a
maximum, and then decreases.
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FIG. 6. Plot of rate vs length of one arm �N� of the star having
three equal arms, for the potential in Eq. �7� for a0=5.0, a1=7.0,
k=2.6436�10−4, Vb=0.1046. The full line is the rate calculated
with Eq. �29�. Here Nc=20 as is clear from the divergence of the
rate. The dotted line represents the rate calculated for the extended
transition state using Eq. �43� while the dashed line is a result of
using Eq. �40�. When the star crosses the barrier with an extended
conformation, its activation energy starts decreasing as it gets
stretched over both sides of the top of the barrier. So the rate slowly
increases with the length of the arm.
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APPENDIX: CALCULATION OF DETERMINANTS

We prove the formula for the infinite product used to get
Eq. �24� from Eq. �23�. We follow the analysis of Coleman
�25�. We consider the function

D�
� =

�
k

�
k − 
�

�
k

�
k
‡ − 
�

�A1�

of the complex variable 
. In the above 
k are eigenvalues
that satisfy

�−
�2

�n�
2 +

V��− a0�
m

		k,��n�� = 
k	k,��n�� �A2�

obeying

� �	��n��
�n�

	
n�=N�

= 0, �A3�

�
�
� �	��n��

�n�
	

n�=0
= 0, �A4�

and

	1�0� = 	2�0� = ¯ = 	 f�0� . �A5�


k
‡ obeys the same set of conditions exactly but with

V��−a0� replaced with V�(R�
‡�n��). We define ��n� ,
� such

that

�− �n�

2 +
V��− a0�

m
	���n�,
� = 
���n�,
� �A6�

satisfying the boundary conditions ���N� ,
�=1 and
����N� ,
�=0. Similarly, we also define ��

‡�n� ,
�, which
obeys exactly the same set of conditions but with V��−a0�
replaced with V�(R‡�n��). Now let

R�
� =

�
��

����0,
��
�
� � ln ���n�,
�

�n�
	

n�=0

�
��

���
�‡��0,
��

�
� � ln ��

‡�n�,
�
�n�

	
n�=0

. �A7�

As 
 goes to infinity in any direction except along the real,
positive 
 direction, both D�
� and R�
� go to unity. Both
D�
� and R�
� are meromorphic function of 
. Further, any
zero or pole of R�
� is a zero or pole of D�
� and vice versa.
Therefore, R�
�=D�
�. In particular, when 
=0, Eq. �A7�
reduces to Eq. �25� and we get

�
k


k

�
k


k
‡

= R�0� =

�
�

���0��
�
� � ln ���n��

�n�
	

n�=0

�
�

��
�‡��0��

�
� � ln ��

‡�n��
�n�

�n�=0

, �A8�

where we have adopted the notation 	��n��=���n� ,0� and
	�

‡�n��=��
‡�n� ,0�.

�1� G. S. Grest, L. J. Fetters, J. S. Huang, and D. Richter, Adv.
Chem. Phys. 94, 67 �1996�.

�2� J. L. Viovy, Rev. Mod. Phys. 72, 813 �2000�.
�3� J. Han, S. W. Turner, and H. G. Craighead, Phys. Rev. Lett.

83, 1688 �1999�.
�4� J. Han and H. Craighead, Science 288, 1026 �2000�.
�5� J. Han and H. Craighead, Anal. Chem. 74, 394 �2002�.
�6� W. D. Volkmuth, T. Duke, R. H. Austin, and E. Cox, Proc.

Natl. Acad. Sci. U.S.A. 92, 6887 �1995�.
�7� D. M. Heuer, S. Saha, and L. A. Archer, Electrophoresis 24,

3314 �2003�.
�8� D. M. Heuer, S. Saha, A. T. Kusumo, and L. A. Archer, Elec-

trophoresis 25, 1772 �2004�.
�9� S. Saha, D. M. Heuer, and L. A. Archer, Electrophoresis 27,

3181 �2006�.
�10� J. Han, S. W. Turner, and H. G. Craighead, Phys. Rev. Lett.

83, 1688 �1999�.
�11� J. Mathe, A. Aksimentiev, D. R. Nelson, K. Schulten, and A.

Meller, Proc. Natl. Acad. Sci. U.S.A. 102, 12377 �2005�.
�12� R. Fan, R. Karnik, M. Yue, A. Majumdar, and Yang, Nano

Lett. 5, 1633 �2005�.
�13� J. Heng, A. Aksimentiev, C. Ho, P. Marks, Y. Grinkova, S.

Sligar, K. Schulten, and G. Timp, Nano Lett. 5, 1883 �2005�.
�14� W. Sung and P. J. Park, Phys. Rev. Lett. 77, 783 �1996�.
�15� P. J. Park and Sung, J. Chem. Phys. 108, 3013 �1998�.
�16� J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer,

Proc. Natl. Acad. Sci. U.S.A. 93, 13770 �1996�.
�17� D. K. Lubensky and D. R. Nelson, Biophys. J. 77, 1824

�1999�.
�18� K. L. Sebastian, Phys. Rev. E 61, 3245 �2000�.
�19� K. L. Sebastian and A. K. R. Paul, Phys. Rev. E 62, 927

�2000�.
�20� P. J. Park and Sung, J. Chem. Phys. 111, 5259 �1999�.
�21� S. K. Lee and W. Sung, Phys. Rev. E 63, 021115 �2001�.
�22� P. Kraikivski, R. Lipowsky, and J. Kierfeld, Europhys. Lett.

66, 763 �2004�.
�23� K. L. Sebastian and A. Debnath, J. Phys.: Condens. Matter 18,

1 �2006�.
�24� J. Langer, Ann. Phys. �N.Y.� 54, 258 �1969�.
�25� S. Coleman, The Whys of Subnuclear Physics, Erice Lectures,

edited by A. Zichichi �Plenum, New York, 1977�.
�26� A. K. R. Paul, Phys. Rev. E 72, 061801 �2005�.
�27� J. S. Ham, J. Chem. Phys. 26, 625 �1957�.

BARRIER CROSSING BY A STAR POLYMER… PHYSICAL REVIEW E 76, 051803 �2007�

051803-9


